2018년 12월 4일 화요일

Kaggle Competition Quick Draw Solution

You may not be interested, but our 24th solution is below.
1. data generate
2. Model
3. optimize, loss, etc
4. ensemble


1. data generate
 - Using simplified file

def draw_cv2_color(raw_strokes, size=256, lw=6, time_color=True):
    img = np.zeros((BASE_SIZE, BASE_SIZE,3), np.uint8)
    for t, stroke in enumerate(raw_strokes):   
        inertia_x = 0
        inertia_y = 0
        for i in range(len(stroke[0]) - 1):
            color = int(255 - 245*(float(t)/len(raw_strokes))) if time_color else 255 ## strokes order
            print(color)
            sx = stroke[0][i]
            sy = stroke[1][i]
            ex = stroke[0][i + 1]
            ey = stroke[1][i + 1]
            color_v =  (np.sqrt((sx-ex)*(sx-ex) + (sy-ey)*(sy-ey)) / np.sqrt(size*size)) * 255 ## strokes distance like speed (1~0)
            color_a = (np.sqrt((inertia_x-ex)*(inertia_x-ex) + (inertia_y-ey)*(inertia_y-ey)) / np.sqrt(size*size*4)) * 255 ## strokes distance like acceleration (1~0)
            _ = cv2.line(img, (sx, sy), (ex, ey), (color,color_v,color_a), lw)
            inertia_x = 2*ex -sx
            inertia_y = 2*ey-sy
           
    if size != BASE_SIZE:
        return cv2.resize(img, (size, size))
    else:
        return img



 - Using raw file

## channel order sequence, speed, acceleration and start point interval time, last stroke last point total drawing time
def draw_cv2_color_new(raw_strokes, size=256, lw=6, time_color=True, last_drop_r = 0.0):
    stx_min, sty_min = 99999, 99999
    stx_max, sty_max = 0,0
    ett=0  # How fast to complete less than 20 seconds
   
    for t, stroke in enumerate(raw_strokes):
        if t == len(raw_strokes) -1:
            ett = int(stroke[2][-1])
        for i in range(len(stroke[0])):
            stx_min = min(stx_min, int(stroke[0][i]))
            stx_max = max(stx_max, int(stroke[0][i]))
            sty_min = min(sty_min, int(stroke[1][i]))
            sty_max = max(sty_max, int(stroke[1][i]))
   
    limit_ett = 20*1000 
    ofs = 15
   
    if int(sty_max-sty_min+2*ofs) > 6000 or int(stx_max-stx_min+2*ofs)  > 6000:
        img = np.zeros((6000,6000,3), np.uint8)
    else:
        img = np.zeros((int(sty_max-sty_min+2*ofs), int(stx_max-stx_min+2*ofs),3), np.uint8)

    for t, stroke in enumerate(raw_strokes):   
        inertia_x = 0
        inertia_y = 0
        pre_st_t = 0
        for i in range(len(stroke[0]) - 1):
            color = int(255 - 245*float(t)/len(raw_strokes)) if time_color else 255 ##  stroke order
            sx = int(stroke[0][i]) - stx_min +ofs
            sy = int(stroke[1][i]) - sty_min +ofs
            st = stroke[2][i]
            ex = int(stroke[0][i + 1])- stx_min +ofs
            ey = int(stroke[1][i + 1])- sty_min +ofs
            et = stroke[2][i+1]
           
           
            time = et-st
            if time ==0:
                time = 1
           
            color_v =  min(int((np.sqrt((sx-ex)*(sx-ex) + (sy-ey)*(sy-ey)) / time)*255.0), 255) ## speed
            color_a = min(int((np.sqrt((inertia_x-ex)*(inertia_x-ex) + (inertia_y-ey)*(inertia_y-ey)) / np.sqrt(time*time))*255.0), 255) ## acceleration (1~0)
            _ = cv2.line(img, (sx, sy), (ex, ey), (color,color_v,color_a), lw)
           
            if i==0:
                color_inter = int((float(et-pre_st_t)/limit_ett)*245)+10
                _ = cv2.circle(img, (sx, sy), lw, (0,0,color_inter), -1) ##interval time
           
            if i==len(stroke[0])-2 and t == len(raw_strokes) -1:
                color_end = int((float(ett)/(limit_ett)*245))+10

                _ = cv2.circle(img, (sx, sy), lw, (0,color_end,0), -1) ##end time
               
            inertia_x = 2*ex -sx
            inertia_y = 2*ey-sy
            pre_st_t=et
           
    return cv2.resize(img, (size, size)) #lw reflects how big the picture is drawn, also the aspect ratio is reflected




2. Model Structure
- Best single model 
 : InceptionResnetV2 (139,139,3) size input  local valid score is  0.9516.
 : using raw file, using 'imagenet' weights, batch size 180

base_model = InceptionResNetV2(input_shape=input_shape, weights='imagenet',include_top= False)
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='rule')(x)
x = Dropout(0.3)(x)
predictions = Dense(340, activation='softmax', name='lastfc')(x)
model = Model(inputs=base_model.input, outputs=predictions)


3. Optimizer, Loss, etc.
 - In first train about 1epoch(50M set) , I used adam and learning rate 0.002,
   categorical cross entropy loss
 - Second train , I used adam accumulation 500 iters and learning rate 0.002,
   categorical cross entropy 10% and top3 loss 90%.
 - I did not have enough time to train to the saturation.

#https://github.com/keras-team/keras/issues/3556
import keras.backend as K
from keras.legacy import interfaces
from keras.optimizers import Optimizer
class AdamAccumulate(Optimizer):
    def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
                 epsilon=None, decay=0., amsgrad=False, accum_iters=1, **kwargs):
        if accum_iters < 1:
            raise ValueError('accum_iters must be >= 1')
        super(AdamAccumulate, self).__init__(**kwargs)
        with K.name_scope(self.__class__.__name__):
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.lr = K.variable(lr, name='lr')
            self.beta_1 = K.variable(beta_1, name='beta_1')
            self.beta_2 = K.variable(beta_2, name='beta_2')
            self.decay = K.variable(decay, name='decay')
        if epsilon is None:
            epsilon = K.epsilon()
        self.epsilon = epsilon
        self.initial_decay = decay
        self.amsgrad = amsgrad
        self.accum_iters = K.variable(accum_iters, K.dtype(self.iterations))
        self.accum_iters_float = K.cast(self.accum_iters, K.floatx())

    @interfaces.legacy_get_updates_support
    def get_updates(self, loss, params):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        completed_updates = K.cast(K.tf.floordiv(self.iterations, self.accum_iters), K.floatx())
        if self.initial_decay > 0:
            lr = lr * (1. / (1. + self.decay * completed_updates))

        t = completed_updates + 1

        lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t)))

        update_switch = K.equal((self.iterations + 1) % self.accum_iters, 0)
        update_switch = K.cast(update_switch, K.floatx())

        ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        gs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]

        if self.amsgrad:
            vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        else:
            vhats = [K.zeros(1) for _ in params]

        self.weights = [self.iterations] + ms + vs + vhats

        for p, g, m, v, vhat, tg in zip(params, grads, ms, vs, vhats, gs):

            sum_grad = tg + g
            avg_grad = sum_grad / self.accum_iters_float

            m_t = (self.beta_1 * m) + (1. - self.beta_1) * avg_grad
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(avg_grad)

            if self.amsgrad:
                vhat_t = K.maximum(vhat, v_t)
                p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon)
                self.updates.append(K.update(vhat, (1 - update_switch) * vhat + update_switch * vhat_t))
            else:
                p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon)

            self.updates.append(K.update(m, (1 - update_switch) * m + update_switch * m_t))
            self.updates.append(K.update(v, (1 - update_switch) * v + update_switch * v_t))
            self.updates.append(K.update(tg, (1 - update_switch) * sum_grad))
            new_p = p_t

            # Apply constraints.
            if getattr(p, 'constraint', None) is not None:
                new_p = p.constraint(new_p)

            self.updates.append(K.update(p, (1 - update_switch) * p + update_switch * new_p))
        return self.updates
    def get_config(self):
        config = {'lr': float(K.get_value(self.lr)),
                  'beta_1': float(K.get_value(self.beta_1)),
                  'beta_2': float(K.get_value(self.beta_2)),
                  'decay': float(K.get_value(self.decay)),
                  'epsilon': self.epsilon,
                  'amsgrad': self.amsgrad}
        base_config = super(AdamAccumulate, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))

4. Ensemble
- I used weighed average ensemble by local valid score and argmax corr.
- I used InceptionResNetV2 (raw, simple), Xception (raw), Resnet50 (simple).
- I did not have time to train both (raw, simple)
- Average weight calculation is below code

def get_score_w(local_score):
    ls = np.array(local_score)
    sub = ls - ls.min()
    div = sub/sub.max()
    add = div + 0.1
    nor = add/add.max()
    sqr = nor*nor
    print(sqr)
    return sqr

def get_corr_w(clsnp):
    corxlist=[]
    for idx1, cls1 in enumerate((clsnp)):
        corylist=[]
        for idx2, cls2 in enumerate((clsnp)):
            cor_max = np.corrcoef(np.argmax(clsnp[idx1],axis=1),np.argmax(clsnp[idx2],axis=1))[0][1]
            corylist.append(cor_max)
        corxlist.append(corylist)

    df = pd.DataFrame(corxlist,columns=names, index=names)
    #print(df)
    corr_w = []
    for i in range(df.shape[0]):
        count = 0
        thr = 0.95
        for v in df.values[i]:
            if v > thr :
                count+=1
        corr_w.append(1.0/count) 
    return np.array(corr_w), df

def getensemble_w(clsnp, local_score):
    score_w = get_score_w(local_score)
    for i in range(score_w.shape[0]):
        if score_w[i]==1.0:
            score_w[i] = 1.2 #max score add 20%
    corr_w = get_corr_w(clsnp)[0]
    ensemble_w = score_w*corr_w
    return ensemble_w


Everybody enjoy the competition~!!






댓글 1개: